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Abstract

This paper presents a new boundary element formulation for fracture mechanics analysis of shear deformable shells.
Hyper-singular boundary integral equations for shear deformable shells are derived. Dual boundary element formu-
lations are constructed by using traction integral equations on one side of the crack surface and displacement integral
equations on the other side of the crack surface and all other boundaries. Five stress intensity factors, two for mem-
brane behaviour and three for shear and bending are computed. Several crack configurations are analysed to dem-
onstrate the efficiency and accuracy of the proposed formulation. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Fracture mechanics analysis of shear deformable plates and shells has many important engineering
applications, e.g. aircraft structure, pressure vessel and piping, and ship construction. The behaviour of
cracked structure can be determined if the stress intensity factors of the problem are known, therefore
during the last three decades much work has been done to evaluate stress intensity factor solutions for
different loadings and geometries. Stress intensity factor solutions for several geometries of cylindrical and
spherical shells have been presented in parametric form (Murakami et al., 1987) based on the classical
theory (see e.g. Folias, 1965a,b; Erdogan and Kibler, 1968) as well as based on the shear deformable shell
theory (see e.g. Sih and Hagendorf, 1977; Krenk, 1978; Delale and Erdogan, 1979a,b). However, due to the
complexity of engineering structures, it is frequently necessary to perform numerical structural analysis.
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For the last two decades, finite element methods (FEM) have been developed to solve cracked shell
problems (see e.g. Barsoum et al., 1979; Budiman and Lagace, 1997; Ehlers, 1986). More recently,
boundary element method (BEM) has been emerged as an alternative numerical method for fracture me-
chanics analysis (see e.g. Portela and Aliabadi, 1992; Aliabadi, 1997a). The dual boundary element method
(DBEM), which is based on displacement and traction integral equations, has been successfully developed
to solve many applications of fracture mechanics problems e.g. 2D and 3D elasticity, thermoelastic, elasto-
plastic, stiffened panel, composite materials and dynamic fracture mechanics, as has been reviewed by
Aliabadi (1997b). However, the application of the DBEM for analysis of crack in shells has not been re-
ported previously.

The displacement boundary integral equations for the Reissner’s plate model have been reported by Van
der Weeén (1982) and Karam and Telles (1988). The traction integral equations for Reissner’s plates have
been reported by Rashed et al. (1998) in which they presented the complete derivation of the hyper-singular
equations and demonstrated procedures for treating the hyper-singular integrals for general boundaries.
Ahmadi-Brooghani and Wearing (1996) used those integral equations to form a DBEM formulation for
crack analysis of plate bending involving shear deformation. Recently, Dirgantara and Aliabadi (2000)
developed DBEM for crack growth analysis of plates loaded in combine bending and tension based on the
Reissner’s plate and 2-D plane stress elasticity theory.

The displacement boundary integral equation for shallow shells involving shear deformation was first
reported by Lu and Huang (1992). Unfortunately, as described in Lu and Huang (1991), this technique
involves complicated fundamental solutions. Using different approach called domain-BEM (see Beskos,
1991), Dirgantara and Aliabadi (1999) developed boundary integral equations for shear deformable
shallow shells by coupling integral equations for shear deformable plate and 2-D plane stress elasticity. The
fundamental solutions involved in this approach are the Reissner’s plate fundamental solutions and the
Kelvin fundamental solutions for plane stress which are much simpler then the previous technique devel-
oped by Lu and Huang (1991). However, this method contains domain integrals as well as boundary in-
tegrals. Utilizing direct integral method and dual reciprocity method (DRM), Wen et al. (2000), further
developed this approach by transforming the domain integrals to boundary integrals.

In this paper, hyper-singular integral equations for shear deformable shells are derived. The hyper-
singular integral equations together with displacement integral equations are employed to form DBEM
formulation for fracture mechanics analysis of shear deformable shells. Several numerical examples are
solved to demonstrate the accuracy and the use of the new dual integral equations.

2. Governing equations
Consider the shallow shell shown in Fig. 1. It has a quadratic middle surface given by
x3 = —3(kxi + ko)) (2.1)
where k1 = 1/R; and k», = 1 /R, are principal curvatures of the shells, and R, and R, are radius of curvature
of the shells in the x; and x, directions respectively.
The equilibrium equations of the shell are given by Sih and Hagendorf (1977) as follows:
Maﬁ‘/; —Q0,+m, =0 (22)
wa — ka/;N“/g + q3 = 0 (23)

Nagp+q. =0 (2.4)
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Middle
surface

Fig. 1. Shallow shell having quadratic middle surface.

where ki, = k; = 0. Throughout this paper indicial notation will be used. Roman indices vary from 1 to 3
and Greek indices vary from 1 to 2.
Stress-displacement relationships are given as

1— 2
Mlﬁ = DTV <Wmﬁ + Wg.o + I_VVW%},-(SMﬁ) (25)
I—v ,
0,=D A=Wy 4+ ws,) (2.6)
Nop = B (g gy +—2— i, 0 + B[(1 = v)ky + v8,5kg9] w3 = N + N (2.7)
ap 2 o f Po 1—v 7,y Qo af aptepd | W3 off off .

where u, and wy are translation of displacements in x;, x;, x3 direction respectively and w, are rotations in
x1, x; direction respectively. D(= Er*/[12(1 —v?)]) is bending stiffness of the shell; C(= [D(1 — v)2’]/2) is
shear stiffness; B(= Eh/(1 —?)) is tension stiffness; 2 = v/10/k is called the shear factor and 4 is the
thickness of the shell. M, are bending moment stress resultants; O, are shear force stress resultants and N,x,,»
are the normal force stress resultants. To make the integral representatlon more convenient, the term N, is
separated to N which are due to in-plane displacements and N .5 Which are due to curvature and out-
of-plane dlsplacements

By substituting Egs. (2.5)—(2.7) into Egs. (2.2)—(2.4), the equilibrium equations in term of displacements
are obtained as follows:

and
LZ’ﬁu,; +f"=0 (2.9)

where L), is the Navier differential operator for shear deformable plate bending problems

D1 —v) (1+v) @ 0
b _ 2 _ 92 _—
Ly==5— (V= ot T 3 o (2.10)
1= -0 8 @2.11)

2 ox,,
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Ly, = —Lj; (2.12)

L} = wﬁvz (2.13)

with /2 = 0 and /7 = g3, while L, is the Navier differential operator for 2-D plane stress problems

B(1+v) @ d

L", = BV?$, —
“ v = + 2 ax,x GX/;

(1-25,) (2.14)

with f" = q;, where ¢, ¢5, q; are equivalent body forces

ow
4 = ¢+ Blku + vhn) 5 (2.15)

X1

« 6W3
¢, = g2 + B(vki + kzz)—a (2.16)

X2

« 6u1 6u2 ) )
q; = 43 — B(k]] + szz)a — B(Vk]] + kzz) a — B(k“ + k22 + 2vk11k22>W3 (217)
1 2

Egs. (2.8) and (2.9) have the form of shear deformable plate bending and two-dimensional plane stress
deformations respectively, for which boundary integral formulation procedures and fundamental solutions
have already been developed (see Van der Weeén, 1982; Aliabadi and Rooke, 1991). Therefore boundary
integral representation for those equations can be achieved by employing procedures for shear deformable
plate bending and two-dimensional plane stress elasticity. The coupling terms consist of the force terms g7,
g5, q5 which should vanish for kj; = k» = 0.

3. Displacement integral equations

The displacement integral equations for shear deformable shallow shell bending problems have been
derived by using the weighted residual method to obtain five integral equations in term of displacements —
two rotations, one out-of-plane displacement and two in-plane displacements in Dirgantara and Aliabadi
(1999). With slightly different arrangements as written in Dirgantara and Aliabadi (1999), the displacement
integral equations can be presented as follows:

w;i(X') + /FP;.(X',X)WJ-(X) dr(x)

2v

= [0 ar0 [kt ()4 000+ 12 (K1 ) (X X) 0200

_ / g B((1 = W)k + V8,5, ) w3(X) W5 (X', X) d2(X),
+ [ X)) de(x) (3.1)

and
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up(X') + / T (X, X)uy (X) AT (X) + / Up (X', X)B[lap(1 = v) 4 3,5k g | w3 (X)np(x) dI(x)
r r
— [ UB X X)B k(1 =) + vk s (X) d(X)
Q

:/U(;;(X’,x)td(x)df(x)%—/Uga(X’,X)qadQ(X) (3.2)

where p, = M gnp, p3s = Ouny, t, = Nygng, t, = t + t i) x € I'and X € Q are field points on the boundary
and inside the domain respectlvely, Wi (X', x) and U(L(X/,X) are the fundamental solutions for displace-
ments, while P;(X’, x) and T@a (X, x) are the fundamental solutions for tractions. The expressions for these
kernels are glven in Dirgantara and Aliabadi (1999).

By taking the point X’ to the boundary, that is X' — x’ € I', and assuming that the displacements u;
satisfy Holder continuity, Eq. (3.1) can be written as follows:

ey (X, (x) + ][ P, x)w;(x) dI(x)

/ W (X', x)p;(x)dI(x) — / w;(x',X) kxﬁB% uy 5(X) + up,(X) + lzvvu(p‘(p(X)éaﬁ dQ(X)
o _

_ / W5 (X, X)heugB((1 = vk + 8,5k ) w3(X) dQ(X)
Q
+ [ M X0 a00%) (33)
Q
and Eq. (3.2) can be written as

cox (X )uy(X') + ][FT,L@ (X', X)u, (x)dI'(x) —|—/ U, (X', X)B [kyp (1 = v) + v8opkgg | w3 (X)ng(x) dI'(X)

r

- /Q Up, (X', X)B k(1 = v) + v3,5kg0 | w3,5(X) dQ(X)

= [ Va0 dr ) + [ U (. X)g,(X)d(X) (4)

where { denotes a Cauchy principal value integral, X, x € I' are source and field points respectively, and
¢;;(x') are the jump terms. The value of ¢;(x’) are

n_ J(1/2); forx' el
ey(X) = { 1 for X' € Q (3.5)

4. Hyper-singular integral equations

The stress resultants at domain point X’ can be evaluated from Egs. (3.1) and (3.2) by using relationships
in Egs. (2.5)—(2.7) to give:

M(X') = / (X X)pr(x) AT (x) —/rP;‘ﬁk(X',x)wk( x)dI'(x /W;‘m (X', X)q; dQ(X) (4.1)

(X)) = / Wy (X, ) (x) AT (x) — / P (X, x)wi(x) dT(x / Wy (X', X) g dQ(X) (42)

and
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Nyp(X') = / Uy, (X', X)1,(x) I (x) — / T, (X', X)u,(x) AT (x)
r r

= [ U K08 (1 =) s (0m, ()0 () + [ 0,(X. X)g; d2(X)
+B [(1 — V)kﬂ; + véaﬁk¢¢]w3 (43)

where the kernels W, Uy, , Py, and T, are given in Dirgantara and Aliabadi (2000).

The stress resultant boundary integral equations are formed by considering the behaviour of Eqgs. (4.1)—
(4.3) when the point X' approaches boundary I' at x’. To satisfy the continuity requirements, the point X’ is
assumed to be on a smooth boundary. A semi-circular domain with boundary I'; is constructed around the
point x’ as shown in Fig. 2.

Taking the limit as X' — x’, Egs. (4.1)—(4.3) can be rewritten as follows:

M,g(x') + lim Py (X', x)w,(x)dI'(x) + lim Py (X', x)ws (x) dI'(x)
=0 Jrorq4re =0 Jr_rrr
= lim W, (X', X)p,(x) dI'(x) + lim W (X', X)p3(x) I (x)
=0 Jrop4rs e=0 Jr_r+r
+im [ 15, X)g3d2(X) (44)
=0 Ja
0p(x') + lim Py (X', x)w,(x) dI(x) + lim Py (X', x)w3(x) dI'(x)
e=0 Jr_rr e=0 Jr_r4r
= lim Wap, (X', X)p,(x) dI'(x) + lim Wi (X', X)p3 (x) I (x)
=0 Jrop4rs e=0 Jr_r+r
Him [ 75, X)g5d2(X) (45)
=0 Ja

and

Fig. 2. Semi-circular region around the source point when it approaches the boundary.
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Ny (x') + lim T35, (X, X)u, () AT (x)

e=0 Jr_r+r:

— lim Uy, (X', %), (x) AT (x)

=0 Jr_rer:

— lim Uy, (X' X)B [y (1 = v) + V3 kipg | w3 (X)m,(x) dT(x)

e=0 Jr_rre

+lim /Q W5, (X, X) g, dQ(X) + B[(1 = v)kup + vOupkyg | w3 (4.6)

Egs. (4.4) and (4.5) represent the bending moment and shear stress resultant boundary integral equa-
tions, respectively, while Eq. (4.6) represent the in-plane normal stress resultant boundary integral equa-
tions at the boundary point x’.

In the limiting processes, w; and u, are required to be C'*, (0 < « < 1), and p; and ¢, are required to be
C%, (0 < o < 1), for the principal-value integrals to exist. Taking into consideration all the limits and the
jump terms as in Dirgantara (2000), for a source point collocated on a smooth boundary the stress resultant
integral equations are obtained as follows:

%M%li(xl) +%r Py, (X', X)u, (x) dI'(x) + ][FP;[B (X', X)us(x)dI'(x)

= 4 Wi X0p, (0800 + [ WX X)) dr )+ [ (. X)gsd(X) @)
r

S0X) + ][ Py, (% X)u, () AT (x) + 7[ Pigs X', X)ws (%) AT (x)

= [ WX (0T + f W X0 AP ) + [ Wi, X)g; d(X) (48)
and

% 45(X) +% Ty, (X', X)u, (x) I (x) + ][FU;&,(X’, X)Bkyy (1 = v) + 8,k | w3 (x)n,(x) dI'(X)

: / * / * 1
= ][FU;[),A/(X ,X)l‘y(X) dF(X) + /Q Udﬂy(x 7X)qy dQ(X) =+ EB [(1 — V)kaﬂ + V5“ﬂk¢¢] w3 (49)

5. Traction integral equations

If Egs. (4.7)—(4.9) are multiplied by ng at the collocation point x’, and substituting Eqs. (2.15)—<(2.17), the
following integral equations can be written:
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1 ! ! % ! ! * !
Sp(X) + ny(x) 7[ Py (XX () A1)+ 1) . P X (x) 4 ()
) § 15, (X0, (X) AT () 4 () [ (6 X)ps(x) AT ()

me) [ ’WBI%(“MX“Wﬂ(Xle" (X)) W (. ) 40(X)

= () | BT =)y gk (X) s (. X) X)) [ W, X)gs d(X)

(5.1)

%p3 (x’) + n,;(x/)][rP;‘ﬂy(x’7 X)u,(x)dI'(x) + nﬁ(x/)% Pg‘m(x’, X)u3(x) dI'(x)

r

= ny(x') ’ Wi, (x',x)p,(x)dI'(x) + n/;(x/)][r W;;ﬁ(x’, X)ps(x)dI'(x)

=) [t (104 00+ %) + 12 (000 ) W5 X)90(K)

=) [ Fay B = ¥k -+ Vg (X)W . X) A(K) + my(x) | W, Xz d(X)
(5.2)

and

%rm (X) + np(x) 7[ rTaﬁ (X, X)u,(x) AT (x) + ny(x') ][IVU;,;A/(X',X)B [Kay (1 = v) + vSuykgp] w3 (x)my (x) AT (x)
— np(x) /Q U2, (%' X)B Koy (1 — ) + v05kpg| w3 5(X) dQ(X)
= ny(x) ][FU:ﬁy(x’,x)r},(x) dr(x) + ng(x) /9 Uy, (X', X)g, dQ(X)
+ %n/;(x’)B[(l — V) + VOupkpp | w3(X)) (5.3)

Eqgs. (5.1)—(5.3) represent five integral equations in terms of boundary tractions, and can be used together
with the five displacement integral equations in Egs. (3.3) and (3.4) to form the dual boundary integral
formulation.

6. Treatment of domain integrals using the dual reciprocity method
6.1. Displacement boundary integral equations

The transformation of domain integrals to boundary integrals for displacement boundary integral
equations of shear deformable shells using the DRM will follow to those developed by Wen et al. (2000).

If the plane stress elasticity body forces g; = ¢ = 0, in the displacement boundary integral equations
(3.3) and (3.4) there are six domain integrals as follows:
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1{3:/ ydQ, 1P = /Wa’“dg,

0
13D—/W 2 do, If_/W3q3 (6.1)
6W3 . 6W3
1;’:/9 o dQ, IGD:/Uaz@ dQ
From the particular solution w2, for plate bending problem, which satisfy the differential equation,
L3 =0 and L%, = F,(r) (6.2)

where LY and L}*Y are adjoint operator of original differential operator L’ for plate bending, the
boundary integral equations for plate bending problem becomes

cx (X)W (x /W* X, x)p; . (x )dF(x)f][rP*(x X)W, ( /W* X', X)F,,(r) dQ(X)
(6.3)
which implies that
7= ea)it ) = [ Wi 08000+ f P X0 (0 T )| - (64)

The particular solutions w?, and p?, for radial basis function F,(r) = 1+ r were derived in Wen et al.

(2000) and are given in Appendix A. Similar to the previous procedure, if

, sy _OB()_x.
Ly, =0 and Ly, = A =1 (6.5)
the domain integral
M
1= ewt)ibe) = [ Wi 0 0ar )+ £ Bk 0 ar |- (66)
m=1 r
and
M
=3 et ) [ W08+ f B 0, (0 ar o | (6.7)
m=1 r r

The particular solutions w*, and p?, are given in Appendix A. Domain integral 7 can be obtained from
Eq. (6.4) by replacing w; with q.
I? can be evaluated from the particular solutions !, and 7! for 2-D plane stress elasticity problems, that is
aFm( ) X 1

Ly, = and Ly, =0 (6.8)
Ox; r
to give
M
=% |:Cof/f(xl)ﬁ}n/}(xl) —/FU;};(X’,X)?fn/;(X)dF(X)+][rTalz(X X)), (%) AT (x) | F~ ' (6.9)
m=1

The last domain integral /? can be obtained from the particular solutions #?, and 2 for 2-D plane stress
elasticity problems, that is
OF,(r) x»

Lﬁ(ddjai =0 and Lm adj Ar2w = - — (6.10)
2
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to give

Ig = ; [Cxﬁ<xl)ﬁrzn/f(x/) - /r UI/f(X/7X)f§1/f(X) dr(x) + ][FT:;;(X/>X>LA‘51/;(X) dr(x) [F~'ws (6.11)

6.2. Traction integral equations

The transformation of domain integrals to boundary integrals for traction boundary integral equations
of shear deformable shells using the DRM can be evaluated from the DRM results of the displacement
boundary integral equations. In the traction boundary integral equations (5.1)—(5.3) there are six domain
integrals as follows:

’ / X , , . du
ng(x )I7D:”ﬁ(x)/ WiawsdQ,  ng(x')I :nﬁ<X)/QVVw36_x:dQ’
Ou . ) )
mX” = ny(x / W’B ~d ng(xX')Ijo = ”ﬁ(X)/QW;mCIs dQ, (6.12)
aW; @w3

() = mx )/ Ui 3y, 49 (X113 = np(X) /Q Uan 5y, 99

Using the same particular solutions w?, and p?, as in displacement integral equations, the stress resultant
integral equations for plate bending problems can be written as

T4 +7[ Py, (X, X)W, () dI'(x) + ][FP“m(x X)¥i3 ()T (x)

][VVa/j x’ rx)pm )dr(x / e (X', x)p2 4 (x / (X w(r)dQ(X) (6.13)

and

%anﬁ (X/> + ][ P;[iy(x/7x)w;y(x) dI'(x) +% P%*/}B(X X) 3(x)dI(x)

= [ W5, K08, (AT + KA+ [ XA (614)

which implies that
" 7D / - | 3 / * / ~3 * ! ~3
nlj(x )17 = I’l[;(X ) Z EMmoc/f(X ) + Paz[iy(x 7X>wmy(x> dr(x) + FPQ[B(X 7x)wm3 (X) dF<X)
r

- ][FWJs,(X’,X)ﬁiy(X)df (x) = /F W (X', X) Py (X) AT (X)] F1W3} (6.15)

m(x)IP = nﬁ(x/){ )» BQ;,;(x/) + 4 Py (X3, (0T (3 +7[ Pia(X', X)5a(X) AT (x)

/Wsﬁ X', X)p,, (x)dI'(x ][st X', X)p,5(x) dI(x )]F Wz} (6.16)
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Similar to the previous procedure for the particular solutions w?*, and p%,, the domain integral 7

(I = g '>{ > [;Mﬂ‘mﬁ< X) + 7[ P (X)L, (A1) + f P Xt (x) 4T ()

=1

— WX AT = [ (Xl (x) 4 ()| } (6.17)

and

ny(X)I {Zl O,p(x ][Psp«(x X)b,,, (x)dI'(x) + ferm(X X),,3(x) dI'(x)

- / W, (X)), ()T (x ][ Wy (X', X () AT (x) | F } (6.18)

The domain integral 77

w(x')ls’—nﬂ(x’){z [;Miw( )+ 7[ Py (X X3, () A7) + £ P, x)i2,(0) AT (9

— np(x ][ oy (X XPm )dr(x)_/FW/B(X X)Dps (X )dF(x)}Fluz} (6.19)

and

nﬂ<x'>1£=nﬂ<x’>{z [§Q;ﬁ<x'>+ ][FPW (X, X)W, (x) AT (x) + 7[ Pl (X', X)32, (%) T (x)

—np(x / 3/3, (x)drI'(x ][Wa/n X’ X)Pma( )dr(x )117 ”2} (6.20)

Domain integral /%) can be obtained from Egs. (6.15) and (6.16) by replacing w; with ¢; to give
L 3
X =m0 D |5+ 7[ Py (X35, (K)AT () +  Pi(X X)555(x) 4T ()
r

][ (X', %)55, (x) AT (x / W5 (X', 3055 (x) I (x >]F- ‘h} (6.21)

and

np(X' ) = ny(x {Z[ an/; ][I_ny (X', x)ws, S (x )dr(x) + %Pgm(x X)W, (x) dI'(x)

- /F W, (X', %), (x)dI(x ][ Waps (X', X) 5 (%) AT (x )]F qs} (6.22)

I5 can be evaluated from the particular solutions @ and 7!  for two-dimensional plane stress elasticity
problem, to give
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np(xX)1}) = n/;(x'){ Z l;]\?’baﬁ( ") — ][I_U;[;},(X/,X)ZA‘;Y(X) dr(x) +% T;ﬁ)y (X', x)d,,, (x)dI'(x)

m=1

F1W3}

(6.23)
The last domain integral /5 can be obtained from the particular solution @2, and 7, to give
N D / 1 72 / (i) —1
np(X)11 = np(x) Z 5 Nomap(X') = I_U,; (X, X)t,, (x)dI(X) + F T (X, X)ity,, (x)dI'(x) | F~ws
m=1 r
(6.24)

7. Dual boundary element method

The dual equations, on which the DBEM is based, are the displacement and the traction boundary
integral equations. Consider a cracked body shown in Fig. 3 with I't, I'" referring to the upper and lower
crack surfaces respectively and I'° denotes the rest of the boundary. The integral representation of the
displacement components w; and u, are used for collocation points on the upper crack surface, that is
x" € I'", and the traction integral equations are used for collocation points on the lower crack surface. As
the source point x* is coincident with x~ € I'", the extra free terms (1/2)w;(x~) and (1/2)u,(x~) appear in
Eqgs. (3.3) and (3.4) and —(1/2)p;(x") and —(1/2)z,(x") appear in Egs. (5.1)-(5.3).

It is also important to note that in the DBEM, extra free terms will appear in IP-I7.

8. Numerical implementation

8.1. Modelling strategy

The general modelling strategy used in this work is similar with the one developed in Dirgantara and
Aliabadi (2000). The strategy can be summarized as follows:

e crack boundaries are modelled with discontinuous quadratic elements, as shown in Fig. 4 to satisfy con-
tinuity conditions of displacements and its derivatives on all nodes for the existence of principal value
integrals;

e the traction equations (5.1)—(5.3) are applied for collocation on one of the crack surfaces;

=0 +T +T°

Fig. 3. A body contains a crack.
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Traction equation
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Domain point

x o —H O

Fig. 4. Modelling strategy for dual boundary element of shear deformable shell.

o the displacement equations (3.3) and (3.4) are applied for collocation on the opposite crack surface and
the other non-crack boundaries;

e continuous quadratic elements are applied along the remaining boundary of the body, except at the in-
tersection between a crack and an edge, where discontinuous or semi-discontinuous are required on the
edge in order to avoid a common node at intersection, and also at boundary corner, where semi-discon-
tinuous are used in order to avoid a common node at the corner.

e several DRM collocation points are placed in the domain.

This simple strategy allows the DBEM to effectively model general crack problems.
After discretisation, Egs. (3.3) and (3.4) together with Egs. (5.1)—(5.3) can be written as

B kA b -

where w = {wy, wy, W3}T, u = {u, uz}T are the boundary displacement vectors, the vectors p = {pl,pg,p3}T,
t= {tl,tz}T are the boundary traction vectors, H°, GP, H°, and G° are the boundary element influence
matrices for plate bending and plane stress elasticity respectively, H* and H" are coupling matrices of
shallow shell, H™ is an additional matrix caused by the shell curvature, and b is the domain load vector.
After imposing boundary condition, Eq. (4.4) can be written as

[Al sy Fsnnt = {0} sy (8.2)

where [A] is the system matrix, {x} is the unknown vector and {b} is the vector of prescribed boundary
values. Nn are number of boundary nodes plus domain points. Using LU decomposition, this system of
algebraic equations can be solved for the boundary unknowns.

8.2. Special crack tip elements

To accurately model the displacement field /7 near the crack tip, a set of special shape function (similar
to those by Mi and Aliabadi (1994) for three-dimensional elasticity problems) has been used. In this work,
discontinuous quadratic elements with £ = —2/3, 0, +2/3 are used. The variation of the displacements
along the element is required to have the form of u(¢&) = u*N*(&) = a} + a5/r + da5(r). If the crack tip is
located at £ = —1, then the shape function in the form N*(¢) = af + a5v/1 + &+ a3(1 + &) is used. On the
other hand, if the crack tip is located at ¢ = +1, then the shape function in the form N*(¢) = b} +
b3v/1 — &4+ b5(1 — &) is used. If N*(&) is set to be equal to J, (= 1 at the collocation node o and = 0 at the
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other nodes), a set of linear system of equations can be established and the unknown constants can be
obtained.

Finally, the shape functions for crack tip elements with the crack tip located at ¢ = —1 are given by:
3B -VI5)E+2/TFE-2
M) =3 VI5+v3-6 ®3)
N(é)—3(\/1_7\/§)5712\/1+é+2(m+\/§) (8.4)
e 2(VI5+ V3 - 6) '
3 (V3-3)e+2/THE-2
and for crack tip element with the crack tip located at & = +1 are
3(3-V3)E+2yT=2E-2
N =3 VI5+v3-6 (8.6)
N(f)73(\f—\/ﬁ)é—l2\/l—é+2(\/ﬁ+ﬁ) 87)
e 2(vV15+ /3 - 6) '
15-3 21 —-¢-2
Ny =2 WIS =3)eavi=¢ (8.8)

T2 VI5+v3-6

8.3. Singularities

There are three different orders of singularity that occur in the boundary integral equations, i.e. weak
singular, strong singular and hyper-singular integrals. The treatment of these singular integrals have been
reported as in Dirgantara and Aliabadi (2000) and are summarized below.

The weakly singular integrals are cancelled using a non-linear coordinate transformation as in Telles
(1987). Strongly singular integrals at non-crack boundaries are evaluated indirectly using the generalised
rigid body movements.

On the crack surface, the strong singular and hyper-singular integrals are evaluated using a singularity
subtraction method based on the Taylor series expansion of the fundamental solution terms around the
singular point, as in Aliabadi et al. (1985). Subsequently, the singular terms are integrated analytically.

8.4. Modelling consideration of the dual reciprocity technique

There are some difficulties in implementing the DRM technique for the DBEM analysis, due to the
coincidence nodes along crack surfaces. These difficulties are summarized as follows:

(1) The DRM collocation points at crack boundaries. The existence of two coincident collocation points
would make the DRM coefficient matrix becomes singular and requires a special treatment.

(2) Integrating over crack boundaries. In an incremental crack growth analysis, the inclusion of crack
boundary implies that the boundary I is continuously changing from one incremental analysis to the next,
and consequently the coefficient matrix has to be updated after each increment.
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Similar to the argument reported in Salgado and Aliabadi (1998), the contribution of the integration
over crack boundaries can be calculated by considering a collocation point X’ and two coincidence nodes x~
and x* on opposite crack surfaces. The integrals can be written in matrix form as

¥ =[H(x,x") H(x,x)] {

Wi (X', x7)

V:Vk(X/’X+) } - [G(¥,x") G(X,x~

(8.9)

ekl

It can be observed that particular solutions and fundamental solutions have properties as follows:

A(X,x") = —p (X, x7); and 75(x',x") = —i5(x/,x7)

wk(x x*) —wk(x X ) and ﬁﬁ(x’ x*) :ﬁﬁ(x’,x*)

Py (X, x") = =P (x,x7); and T (x,x") = —T;(x,x") (8.10)
Py (X, x") = =Py (X' ,x7); and Ty (X',x%) = — Ty (x',x7) '
Wi, x) = W(x¥',x7); - and - Up (¥, x7) = Ugy(x',x7)

Wi (X', x1) = W (x',x7); - and - Uy, (X, x7) = Uy, (X, x7)

Substituting properties in Eq. (8.10) into the matrix in Eq. (8.9), it can be seen that the contribution of
the integration over crack boundaries to the coefficient matrix is equal to zero. Therefore, it is not necessary
to include the crack boundaries in the integration process of /P—/}. In that case, the difficulties mentioned
above are eliminated since the exclusion of crack boundary also means that there will be no DRM col-
location points along the crack boundaries.

9. Evaluation of the stress intensity factors

Five stress intensity factors, two SIFs due to membrane loads and three due to bending moments and
shear loads as shown in Fig. 5 have to be computed. In this work, the stress intensity factors are determined

Fig. 5. Crack modes for shear deformable shell: (a) opening due to membrane stress resultant; (b) sliding due to membrane stress
resultant; (c) opening due to bending stress resultant; (d) sliding due to bending stress resultant; (e) tearing due to shear stress resultant.
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by the crack surface displacement extrapolation (CSDE) technique. The displacements field for shear de-
formable shell are as follows:

1+v /12 r 0/3—v .05+
0, =% (F)’/E {K”,cosi (1—4—\)_0089> + Ky s1n§<1 +V—cos@)}

1+v /12 r L 0/3—v 013y
¢, =—— | —= )1/=— |Kjpsin= [ —— — cos 0 K, COS— —co
: E <h3> 271{ th St 2<l+v €08 ) »¢ SZ( I+v ¢ SH)}

24(1+v) |r .
- _ - 9.1
w3 SER 27‘[K3b S ( )

S 2(0+w) r 0(1—v . ,0 .07 2 , 0
u = h 2n{]ﬁ,,,cos( T + sin > +K2msm2<1+v+cos 5

U, = 2(1];; V) é {Klm sing (liJrv — cos? g) +K2mcos§ <‘1)—+1+ sin’ g)]
where (r, 0) are the polar coordinates measured from the crack tip, Kj,, and K5, are mode I and mode II
membrane stress resultant intensity factors respectively, Kj,, Ky, and K3, are two bending and shear stress
resultant intensity factors respectively.

It is worth noting that the angular functions of the bending and membrane stress resultants for shear
deformable plates and shells around the crack tip are identical. This feature permits the bending and
membrane stress fields to be combined.

Reissner (1947) and Naghdi (1956) assumed that the stresses due to membrane forces are uniform, the
stresses due to bending and twisting moments vary linearly and the transverse shear stresses vary para-
bolically over the thickness, and proposed expressions for the stress components as follows:

X3 _1 12)(?3 y:ﬁ]f(x;&ﬁ
<1 +]Ty>0'aﬁ —ZNaﬁ“F h3 M:{ﬁ7 {V #[3 if a:ﬁ (92)
and
X3 3 ZX'; 2
<1+E>0a325[1—<7) 1Qa, VF£ o (9.3)

By considering Egs. (9.2) and (9.3), relationships between the stress resultant intensity factors and
the stress resultants, and also between the stress intensity factors and the stresses, the above stress resul-
tant intensity factors can be related to stress intensity factors Ki, Ky, and Ky through the following re-
lationships

[ xs /1 1\] 1 12x
1+33<171+R_2> KI:ZK1n1+h_33K1b (94)
[ x3 /1 1Y\] 1 12x
1+53<171+R_2> KII:ZK2m+73K2b (9.5)

[ox 1 1] 3 263\’
1+2<R1+R2>_K1112h[1 <h> ]Ky; (9.6)

and
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e

Crack tip
Fig. 6. Crack tip element.
The crack opening displacements are defined as:
Ag, ¢y ¢y
A, (%) (%)
AW3 = w3 — W3 (97)
Auy u uy
Auy U2 ) p=1800 U2 ) p=—1500
(48 /or i
ARV 0 0 0 0 X,
0 g—f} % 0 0 0 Ky,
= 24(14v)  for Ksp
0 0 SEh‘ ra 0 0 Kim
0 0 0 % > 0 Ko,
| 0 0 0 0 E% 5 |

The stress intensity factors can be written in term of crack opening displacements, as

K. ke 30 0 0 0 Ao,
Ky, 1 0 &3 0 0 0 A,
K3b = 7’7 0 0 24?{?‘7) \/g 0 0 AW3 (98)
Kin 0 0 0 2vV2r 0 Auy
Kom 0 0 0 0 2y (Aw

The values are interpolated to the crack tip (Fig. 6) using the following relationship

K=—TM <KBB’ - rBB’K“’) (9.9)

AN — BB v

where ryn = (5/6)1; rggr = (1/2)1.

10. Numerical examples

To present the capability of the proposed method, several numerical examples are analysed. They in-
clude cracks in spherical and cylindrical shells.
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10.1. Clamped and simply supported square spherical shells with a centre crack: uniformly loaded

Consider a square spherical shell with a centre crack shown in Fig. 7, with b = 1; a/b = 0.2, 0.4 and 0.6.
Two cases of boundary conditions are considered in this example: clamped and simply supported on all
sides. A uniform pressure is applied over the shell domain. Modulus of elasticity £/p, = 210000, Poisson’s
ratio v = 0.3 and ratio between the width and the shell thickness /4 = 10. The ratio between the width and
the radius of curvature /R is varied between 0.0 and 0.2, where b/R = 0.0 represent a flat plate.

For the analysis, eight elements per side of the shell, 12 elements for each crack surface are used, and
7 x 7 DRM domain points are used.

Figs. 8 and 9 show the displacements on the crack surface and along symmetry line for shell having
b/R = 0.01. They are compared to half model using only displacement equations of BEM. As it can be seen,
the results show good agreement between the two models.

At the top and bottom surfaces of the shell, that is x; = £4/2, stress intensity factors for this problem are
as follows:

h 1 6
<liﬁ>KI:zK1miﬁK1b (101)
h 1 6
<1 iﬁ>K” :Zsz:l:ﬁKZb (102)
and
Kn=0 (10.3)
On the other hand along the middle surface, that is x3 = 0, the stress intensity factors are given by
1
K = ZKI'" (10.4)
1
KH = ZKZW (105)
and
K = iK (10.6)
1 — 2h 3b .

Fig. 7. Square spherical shell with a centre crack.
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Fig. 8. Displacements on the crack surface and along the line of symmetry (/R = 0.01, a/b = 0.2 and b/h = 10).

w/b

In this example, values of normalised Ky; and Kyyp are very small (of order 1077), therefore this case can be
considered as pure mode I. The normalised stress intensity factors for mode I, K; due to bending and
membrane obtained from the DBEM results are shown in Figs. 10 and 11. It can be seen from the results
that as the radius of curvature R become smaller, the K; due to membrane increases while the Ky due to
bending decreases. This is because as the shell becomes deeper, more part of the pressure is transferred
to membrane load. The results also show that as the R — oo, that is when the panel is flat, only K7 due to
bending exist.
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Fig. 9. Displacements on the crack surface and along the line of symmetry (/R = 0.01, a/b = 0.2 and b/h = 10).

10.2. Clamped and simply supported square cylindrical shells with a centre crack: uniformly loaded

The second shell example considered here is a square cylindrical shell with a centre crack shown in Fig.
12 with b = 1; a/b = 0.2. A uniform pressure is applied over the shell domain. Modulus of elasticity of the
material is chosen £/py = 210000, Poisson’s ratio v = 0.3 and shell thickness b/h = 20.
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Fig. 10. Normalised K; on the top surface of a clamped square spherical shell: uniform pressure.

For the DBEM analysis, eight elements per side of the shell and 12 elements for each crack surface are
used, together with 7 x 7 DRM domain points. For comparison, half model of the shell is also analysed
using 48 elements and 28 domain points (i.e. displacement BEM only), as well as FEM analysis using a
quarter model of the shell with 3092 nodes and 1646 elements (Figs. 13 and 14).

Figs. 15 and 16 present the displacements on the crack surface and along the line of symmetry. Also
presented are the BEM results obtained using the half model using only displacement equations and FEM
results. As it can be seen, the results presented are in good agreements.

To study the effect of different type of shells and boundary conditions on the stress intensity factors, in
this example clamped and simply supported square cylindrical shells are considered. A uniform load is
applied over the shell domain. Modulus of elasticity of the material is chosen E/py, = 210000, Poisson’s
ratio v = 0.3 and the ratio between the width and shell thickness /4 = 10. Three different crack length,
a/b=10.2, 0.4 and 0.6 are analysed. Ratios between the width and the radius of curvature »/R, is varied
between 0.0 and 0.2 and /R, = 0.

As in the first example, the SIF values of normalised Kj; and Kj;; obtained are very small (of order 1077),
therefore this case can also be considered as pure mode I. The normalised stress intensity factors for mode I,
K due to bending and membrane obtained from the DBEM results are shown in Figs. 17 and 18. Similar to
the previous example, the results show that as the radius of curvature R, become smaller, the K; due to
membrane increases while the K; due to bending decreases. The result also shows that as the R; — oo, that
is when the panel is flat, only K; due to bending exist.
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Fig. 11. Normalised K on the top surface of a simply supported square spherical shell: uniform pressure.

Fig. 12. Square cylindrical shell with a centre crack.

By comparing the results from spherical shell (example 10.1) and cylindrical shells (example 10.2), it can
be seen that as the R, become smaller, the total stress intensity factor decreases faster in spherical shell. It
can also be seen in the results that as the R; — oo, in both examples the stress intensity factors are ap-
proaching those of a flat plate due to bending (see Dirgantara, 2000).

With the capability of computer today, it takes only a few minute computer time for solving compu-
tational model of structures (in this case, using Pentium 111 650 MHz with 256 MB RAM, this example was
solved in less than two minutes). Therefore the main issue of computer modelling of structure is the time
spent on data preparation.
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Fig. 13. FEM — quarter model of centre crack in cylindrical shell: 3092 nodes, 1646 elements.
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Fig. 14. Boundary element models for a centre crack in cylindrical shell: (a) DBEM; (b) BEM - half model.

10.3. Symmetric cracks emanating from a hole in a square cylindrical shells

As the last example, consider a symmetric cracks emanating from a hole in a square cylindrical shell
b=1;a/b=0.2and 0.5 as shown in Fig. 19. The shell is simply supported on two sides. A uniform load is
applied over the shell domain. Modulus of elasticity £/py = 210000 and Poisson’s ratio v = 0.3. Ratio
between hole size and shell width is »/b = 0.1, and the shell width to thickness ratio is b/h = 10. The value
of b/R, = 0.0 and b/R, is varied between 0.0 and 0.2, where /R, = 0.0 represent a flat plate.

For the analysis, a total of 132 elements, that is eight boundary elements per side of the shell, 20 elements
for the hole and 20 elements for each crack surface, and 7 x 7 DRM domain points are used.

The normalised stress intensity factors for mode I, K} due to bending and membrane are shown in Fig.
20. The normalisation factors used here are the same as the ones used in the cylindrical shell example.
Similar to the previous example, the results show that as the radius of curvature R, become smaller, the K;
due to membrane increases while the K7 due to bending decreases. The results also show that as the
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Fig. 15. Displacements on the crack surface and along the line of symmetry (5/R, = 0.01, a/b = 0.2 and b/h = 20).

R; — oo, that is when the panel is flat, only K7 due to bending exist, and the value is the same as the one
which is obtained for plate bending example (see Dirgantara, 2000).

11. Conclusion

In this paper, the dual boundary integral equations were derived for the shear deformable shell theory.
Domain integrals were transformed to boundary integral with the aid of the DRM, using radial basis
function 1 + » and its derivatives. To model accurately displacement field near the crack tip, special crack
tip elements were developed. These elements were used for the evaluation of SIFs using a CSDE technique.



T. Dirgantara, M.H. Aliabadi | International Journal of Solids and Structures 38 (2001) 7769-7800 7793

1.40

| | —e—DBEM A
0.40 1|~ £ -BEM Half model
[ | —A—-FEM Quarter model

25.00

s i —&— DBEM
5.00 4 — £ -BEM Half model ‘
B —-A --FEM Quarter model 2
\
\AA
I A
OO0+ R
0.00 0.02 0.04 006 0.08 010 0.12 0.14 016 0.18 0.20

x/b

Fig. 16. Displacements on the crack surface and along the line of symmetry (b/R, = 0.01, a/b = 0.2 and b/h = 20).

Several examples were solved, and the results demonstrated the accuracy and the validity of the present
formulations.

Appendix A
A.1. Particular solutions for two-dimensional plane stress

An expression for displacement particular solution %’ , can be obtained in polar coordinates with the use
of the Galerkin vector G, as
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Fig. 17. Normalised K; on the top surface of a clamped square cylindrical shell: uniform pressure.

o I+v ,
M:W(}") = G}/)’a,w (}”) - TG;W,/}",'(F) (Al)

where G4 satisfies

2

VAL G/ E——
R

D5,=0 (A2)
-

and a solution is determined by

3
rx,

G =——1
P+ = T 45(1 - v)B

Oup (A.3)

Substituting Eq. (A.3) into Eq. (A.1), then the particular solution for displacements can be arranged as

N 2 14w x:f
”ml__m[T_T(7+3W)]

o 1+ )@
u’"z_IS(l—v)B( PR

and using strain-displacement relationships for 2-D plane stress, the strains are obtained as
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Fig. 18. Normalised K; on the top surface of a simply supported square cylindrical shell: uniform pressure.

Fig. 19. Symmetric cracks emanating from a hole in a square cylindrical shell, simply supported on two sides, subjected to uniform
pressure.

2 r l+v x 6x
Al
=iy (F3) 5 (55 )]
2 xx, 14+ x3x 3x1x
Al 1%2 XXz 1X2
= — A5
Ema (1—v)[6r 30 ( P + r )] (A-3)

2 14y x1x3
al —__ = - '~ 2 2
22 =T 23) 30 < * )
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K/pVra

250.0
200.0 7
150.0
100.0

50.0

0.0
0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225

—O— K| (due to bending) - a/b=0.2 -1 K (due to membrane) - a/b=0.2 ——K|(total) - a/b=0.2
—&— K, (due to bending) - a/b=0.5 —iK (due to membrane) - a/b=0.5 —4—K |(total) - a/b=0.5

Fig. 20. Normalised K; on the top surface of symmetric cracks emanating from a hole in a square cylindrical shell, simply supported on
two sides, subjected to uniform pressure.

The particular solution for membrane stress resultant can be derived by substituting Eq. (A.5) into the
stress resultant-strain relationships for 2-D plane stress to give:

N;lll = B[(l - v)‘g‘;lnll + v‘g‘rlnmc:|
NJ:IZ =B(1 - V)‘S':nu (A.6)

ertZZ = B[(l - ")éylnzz + vgrlnm:|
and the particular solutions of traction are obtained from
b

o

In the same way, displacement particular solutions &2 can be obtained as follows:

(A.8)

and the strains are
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2 1 2.2
éfnll:f +V<_?%+2r)

2 XX 14+v xXox 3x1x
A2 1X2 5X1 1X2
— B gy A9
[6r 30 ( 3 r )] (A9)

2 X2 r 1+v X 6x?
22 = T L B A W)
bna = (1—v)[<r+3> 30 < R +3r>}

The particular solution for membrane stress resultant are

me = B{(l - V)érznll + Véﬁm}

me =B(1- v)éntZ (A.10)
Nizz =B {(1 - V)éfnzz + Vi, }

mou
and finally the particular solutions of traction are obtained from

b, =Nonp (A.11)

mo

A.2. Particular solutions for plate bending

Governing equation for shear deformable plate bending problem can be written as
w = Heop (A.12)

. . . N N N AT T . .
where particular solutions of displacement W = {Ww;, Wy, W3} , e = {e,es,e3} is arbitrary constant vector
and components of matrix H are

az
_ 4 _ 2 N2
Hyp =20,V — [(1+ )V + (1 = v)2)] o
0 (A.13)
H. — — — 1 _ 2 42
30 a3 ( V)(V A )axu

Hy = (V2 = 22)2V? — (1 = )22/ 72
The function ¢ can be defined from Eq. (A.12) such that

D(1 =) (V2 =)V +F(r)=0 (A.14)
If e, =0, e; = 0 and e3 = 1, the particular solution used in Eq. (6.4) can be written as
g = s 22
b ?x“ (A.15)
Wiz = S 2V — (1 =v)2*y]
where
Vi(r)+F(r)=0 (A.16)

The particular solutions of moment and shear force can be determined from shear deformable plate
bending stress resultant-displacement relationship. The tractions on the boundary can be obtained by

P = Mugng, Pz = O, (A.17)
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If radial basis function F(r) = 1 + r, The function ¢(r) can be solved from Eq. (A.16)

A S
<P(r)=—<64+225) (A.18)
and the rotations and deflection can be deduced
1 o\ x 2
P IR TRAN Rl S
W = (16+45> D

B 1 7\ x?
sz(m+45) 7 (A.19)
) —_ _ l_A'_% L-i— L_FL l
Y= \2T9 )= w2p " \64 " 225)D

The particular solutions of moments Mmﬁ and shear forces Qﬁ can be determined by from shear de-
formable plate bending stress resultant-displacement relationship to give

- 1 r ”oP
M, = —{<§+E> (x1 +w3) + (1 +v)<E+E>]

N 1 r

Mil2:—(l+v)<§+ﬁ>(x1xz)

M, =— l—&-L (i +x3) + (1 +v) r—2+r—3 (A.20)
m22 8 15 L 16 45

and the tractions on the boundary can be obtained from relationships in Eq. (A.17).
For the derivative of function F, = x,/r, the solution ¢*() can be found

r3xa

= (A21)

@*(r) = —

and particular solutions W%, are

" r
ernl = _(33% +"2) 45D
~1 X1XoF

rX

W= —[30 — (1 — V)i ]—————
m3 [ ( ) ]45(1 _V);LZD

and the particular solutions of moments Ma/f and shear forces Q/j are
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2 2
oo nf(% 3

2
~ Xy [ X
M, = —(1 _V)E<7l+”)

2 2
o X (5 % A23
M, 15{v<r+3r)+(r+r)} (A.23)

anz = _%)%
for « = 1, and
PO _ Xixor
ml 15D
Wy = —(3x3 +77) 45% (A.24)
W2, = —[30 — (1 — v))ﬁrz]ﬁ

and the particular solutions of moments M,; and shear forces Qﬁ are

_ ) 5 _
2o X (5 2
M., = 15 _v(r+r)+<r+3r)_

2
Milz =—(1- V)% <x2 —I—i’)

r

_ ) 5 _
M2, = —% v<%+r> + (%4—31’) (A.25)
~ 1X1-X2 )
Oh=-3—
m 3 r
A 1/ x2
G5 (2+)
for oo = 2.
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